INSTALLATION MANUAL

SINGLE PACKAGE AIR CONDITIONER/GAS HEAT

MODELS: PCG4 Series

(2-5 Ton)

LIST OF SECTIONS

GENERAL INFORMATION 1 SAFETY 1 MODEL NUMBER NOMENCLATURE 2 INSTALLATION 2	AIRFLOW PERFORMANCE .11 OPERATION .15 TYPICAL WIRING DIAGRAMS .19 START UP SHEET .25
LIST OF	FIGURES
Component Location	Gas Valve
Center of Gravity Location	Measuring External Static Pressure
Unit Dimensions	Connection Wiring Diagram - 2 to 3 Ton Models19
Bottom Duct Dimensions (inches)	Ladder Wiring Diagram - 2 to 3 Ton Models
Rear Duct Dimensions (inches) 6	Connection Wiring Diagram - 3.5 to 5 Ton Models
Typical Field Control Wiring Diagram For Gas Heat - AC Models 7	Ladder Wiring Diagram - 3.5 to 5 Ton Models22
Typical Field Power Wiring Diagram	R-410A Quick Reference Guide
Flue Vent Outlet Air Hood	
LIST OF	TABLES
Unit Limitations	Natural Gas Application Data10
Weights and Dimensions	Propane (LP) Gas Application Data10
Unit Dimensions	Airflow - Side Duct Application
Unit Clearances	Airflow - Bottom Duct Application
Electrical Data7	Additional Static Resistance
Physical Data	Ignition Control Board Flash Codes16
Natural Gas Pine Sizing Chart 9	Gas Rate Cubic Feet Per Hour 18

SECTION I: GENERAL INFORMATION

These are electric cooling/gas heating units designed for outdoor installation. Only gas piping, electric power and duct connections are required at the point of installation.

The gas-fired heaters have spark ignition.

The refrigerant system is fully charged with R-410A Refrigerant, and is tested and factory sealed.

SECTION II: SAFETY

This is a safety alert symbol. When you see this symbol on labels or in manuals, be alert to the potential for personal injury.

Understand and pay particular attention to the signal words **DANGER**, **WARNING**, or **CAUTION**.

DANGER indicates an **imminently** hazardous situation, which, if not avoided, **will result in death or serious injury**.

WARNING indicates a **potentially** hazardous situation, which, if not avoided, **could result in death or serious injury**.

CAUTION indicates a potentially hazardous situation, which, if not avoided <u>may result in minor or moderate injury.</u> It is also used to alert against unsafe practices and hazards involving only property damage.

A WARNING

Improper installation may create a condition where the operation of the product could cause personal injury or property damage. Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage. Failure to carefully read and follow all instructions in this manual can result in furnace malfunction, death, personal injury and/or property damage. Only a qualified contractor, installer or service agency should install this product.

A CAUTION

This product must be installed in strict compliance with the installation instructions and any applicable local, state, and national codes including, but not limited to building, electrical, and mechanical codes.

A WARNING

Before performing service or maintenance operations on unit, turn off main power switch to unit. Electrical shock could cause personal injury. Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage. Refer to this manual. For assistance or additional information consult a qualified installer, service agency or the gas supplier.

A CAUTION

This system uses R-410A Refrigerant which operates at higher pressures than R-22. No other refrigerant may be used in this system. Gage sets, hoses, refrigerant containers and recovery systems must be designed to handle R-410A. If you are unsure, consult the equipment manufacturer. Failure to use R-410A compatible servicing equipment may result in property damage or injury.

A WARNING

If the information in this manual is not followed exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance.

WHAT TO DO IF YOU SMELL GAS:

- 1. Do not try to light any appliance.
- Do not touch any electrical switch; do not use any phone in your building.
- 3. Immediately call your gas supplier from a neighbor's phone. Follow the gas supplier's instructions.
- 4. If you cannot reach your gas supplier, call the fire department

Installation and service must be performed by a qualified installer, service agency or the gas supplier.

Due to system pressure, moving parts, and electrical components, installation and servicing of air conditioning equipment can be hazardous. Only qualified, trained service personnel should install, repair, or service this equipment. Untrained personnel can perform basic maintenance functions of cleaning coils and filters and replacing filters.

Observe all precautions in the literature, labels, and tags accompanying the equipment whenever working on air conditioning equipment. Be sure to follow all other applicable safety precautions and codes including ANSI Z223.1 or CSA-B149.1- latest edition.

Wear safety glasses and work gloves. Use quenching cloth and have a fire extinguisher available during brazing operations.

SECTION III: MODEL NUMBER NOMENCLATURE

PCG	4	Α	24	50	2	Х	1	Α
1	2	3	4	5	6	7	8	9

1. Model Family

PCG - packaged A/C with gas heat,

PHG - packaged heat pump with gas heat,

PCE - packaged A/C with electric heat,

PHE - packaged heat pump with electric heat

2. Nominal Cooling Efficiency

4 = 14 SEER, 6 = 16 SEER, etc.

3. Cabinet Size

 $A = \text{small } 35 \times 51, B = \text{large } 45 \times 51$

4. Nominal Air Conditioning Cooling Capacity BTUx1000

24 = 24,000 BTU, etc.

5. Gas Heating Input BTU/Hr x 1000

050 = 50,000 BTU/Hr. input, blank = electric heat

6. Voltage-Phase-Frequency

2 = 208/230-1-60, 3=208/230-3-60, 4 = 460-3-60

7. NOx Approval

X = low-NOx, blank = not low-Nox

8. Generation Level

1 = first generation

9. Revision Level

A = original release, B = second release

Examples:

PCG4B421002X1A is a packaged A/C with gas heat, 14 SEER, 3-1/2 ton, large cabinet, single-stage heat, 100,000 BTU gas heat, 230 volt, single phase, low-NOx model (first generation, first release)

SECTION IV: INSTALLATION INSTALLATION SAFETY INFORMATION

Read these instructions before continuing this appliance installation. This is an outdoor combination heating and cooling unit. The installer must assure that these instructions are made available to the consumer with instructions to retain them for future reference.

- Refer to the unit rating plate for the approved type of gas for this product.
- Install this unit only in a location and position as specified on Page 4 of these instructions.
- Never test for gas leaks with an open flame. Use commercially available soap solution made specifically for the detection of leaks when checking all connections, as specified on Page 10 of these instructions.

- 4. Always install unit to operate within the unit's intended temperaturerise range with the duct system and within the allowable external static pressure range, as specified on the unit name/rating plate, specified in Table 6 of these instructions.
- This equipment is not to be used for temporary heating of buildings or structures under construction.

A WARNING

FIRE OR EXPLOSION HAZARD

Failure to follow the safety warning exactly could result in serious injury, death or property damage.

Never test for gas leaks with an open flame. use a commercially available soap solution made specifically for the detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury or loss of life.

LIMITATIONS

These units must be installed in accordance with the following:

In U.S.A.:

- 1. National Electrical Code, ANSI/NFPA No. 70 Latest Edition
- 2. National Fuel Gas Code, ANSI Z223.1 Latest Edition
- Gas-Fired Central Furnace Standard, ANSI Z21.47a. Latest Edition
- 4. Local building codes, and
- 5. Local gas utility requirements

In Canada:

- 1. Canadian Electrical Code, CSA C22.1
- 2. Installation Codes, CSA B149.1.
- 3. Local plumbing and waste water codes, and

4. Other applicable local codes.

Refer to unit application data found in this document.

After installation, gas fired units must be adjusted to obtain a temperature rise within the range specified on the unit rating plate.

If components are to be added to a unit to meet local codes, they are to be installed at the dealer's and/or customer's expense.

Size of unit for proposed installation should be based on heat loss/heat gain calculation made according to the methods of Air Conditioning Contractors of America (ACCA).

This furnace is not to be used for temporary heating of buildings or structures under construction.

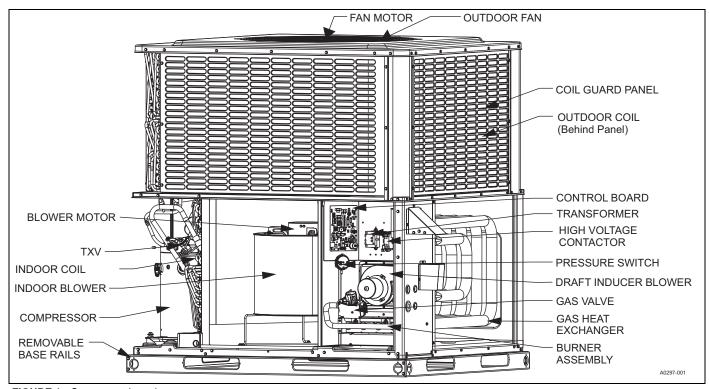


FIGURE 1: Component Location

Table 1: Unit Limitations

		Unit Limitations						
Model	Unit Voltage	Applied	Voltage	Outdoor DB Temp				
		Min	Max	Max (°F)				
24	208/230-1-60	187	252	125				
30	208/230-1-60	187	252	125				
36	208/230-1-60	187	252	125				
42	208/230-1-60	187	252	125				
48	208/230-1-60	187	252	125				
60	208/230-1-60	187	252	125				

LOCATION

Use the following guidelines to select a suitable location for these units:

- 1. Unit is designed for outdoor installation only.
- Condenser coils must have an unlimited supply of air. Where a choice of location is possible, position the unit on either north or east side of building.
- 3. Suitable for mounting on roof curb.
- 4. For ground level installation, a level pad or slab should be used. The thickness and size of the pad or slab used should meet local codes and unit weight. Do not tie the slab to the building foundation.
- Roof structures must be able to support the weight of the unit and its options/accessories. Unit must be installed on a solid, level roof curb or appropriate angle iron frame.
- Maintain level tolerance to 1/8" across the entire width and length of unit.

A WARNING

Excessive exposure of this unit to contaminated combustion air may result in equipment damage or personal injury. Typical contaminates include: permanent wave solution, chlorinated waxes and cleaners, chlorine based swimming pool chemicals, water softening chemicals, carbon tetrachloride, Halogen type refrigerants, cleaning solvents (e.g. perchloroethylene), printing inks, paint removers, varnishes, hydrochloric acid, cements and glues, anti-static fabric softeners for clothes dryers, masonry acid washing materials.

CLEARANCES

All units require particular clearances for proper operation and service. Installer must make provisions for adequate combustion and ventilation air in accordance with section 5.3 of Air for Combustion and Ventilation of the National Fuel Gas Code, ANSI Z223.1 – Latest Edition (in U.S.A.), or Sections 7.2, 7.3, or 7.4 of Gas Installation Codes, CSA-B149.1 (in Canada) - Latest Edition, and/or applicable provisions of the local building codes. Refer to Table 4 for clearances required for combustible construction, servicing, and proper unit operation.

A WARNING

Do not permit overhanging structures or shrubs to obstruct condenser air discharge outlet, combustion air inlet or vent outlets.

RIGGING AND HANDLING

Exercise care when moving the unit. Do not remove any packaging until the unit is near the place of installation. Rig the unit by attaching chain or cable slings to the lifting holes provided in the base rails. Spreader bars, whose length exceeds the largest dimension across the unit, **MUST** be used across the top of the unit.

A CAUTION

Before lifting, make sure the unit weight is distributed equally on the rigging cables so it will lift evenly.

Units may be moved or lifted with a forklift. Slotted openings in the base rails are provided for this purpose.

A CAUTION

If a unit is to be installed on a roof curb other than a Unitary Products roof curb, gasket or sealant must be applied to all surfaces that come in contact with the unit underside.

A CAUTION

All panels must be secured in place when the unit is lifted. The condenser coils should be protected from rigging cable damage with plywood or other suitable material.

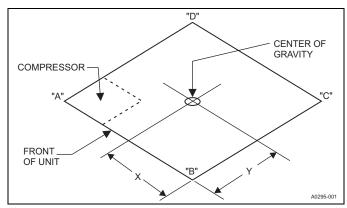


FIGURE 2: Center of Gravity Location

Table 2: Weights and Dimensions

Model	Weigh	nt (lbs.)	Center of	of Gravity		4 Point Load	Location (lbs.)	
	Shipping	Operating	Х	Υ	Α	В	С	D
24050	372	367	28	15	120	95	81	71
24075	382	377	28	15	124	96	81	76
30050	417	412	28	15	139	99	90	84
30075	421	416	28	15	146	93	82	95
36050	425	420	28	15	141	107	94	78
36075	432	427	28	15	135	115	103	74
36100	436	431	28	15	139	113	99	80
42075	446	441	28	15	145	112	99	85
42100	448	443	28	15	148	110	96	89
48065	520	515	28	15	189	116	93	117
48100	528	523	28	15	169	139	115	100
48125	533	528	28	15	164	145	124	95
60065	537	532	29	15	174	142	124	92
60100	541	536	28	15	177	140	117	102
60125	548	543	27	15	151	167	141	84

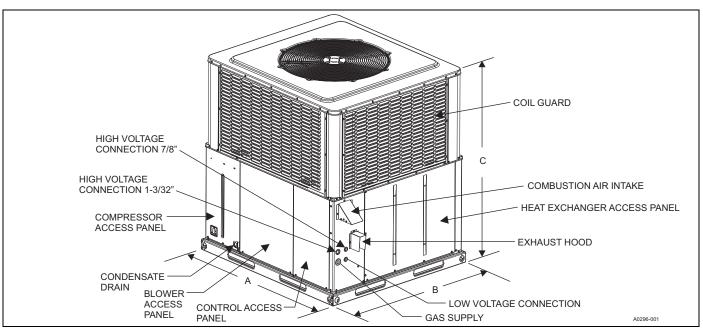


FIGURE 3: Unit Dimensions

Table 3: Unit Dimensions

Model	Dimensions						
Wiodei	Α	В	С				
24	51-1/4	35-3/4	47				
30	51-1/4	35-3/4	47				
36	51-1/4	35-3/4	47				
42	51-1/4	35-3/4	49				
48	51-1/4	45-3/4	53				
60	51-1/4	45-3/4	55				

Table 4: Unit Clearances^{1 2}

Direction	Distance (in.)	Direction	Distance (in.)
Top ³	36	Power Entry (Right Side)	36
Side Opposite Ducts	Opposite Ducts 36		24
Duct Panel	0	Bottom ⁴	1

- 1. A 1" clearance must be provided between any combustible material and the supply air duct work.
- 2. The products of combustion must not be allowed to accumulate within a confined space and recirculate.
- 3. Units must be installed outdoors. Over hanging structure or shrubs should not obstruct condenser air discharge outlet.
- 4. Units may be installed on combustible floors made from class A, B or C roof covering materials.

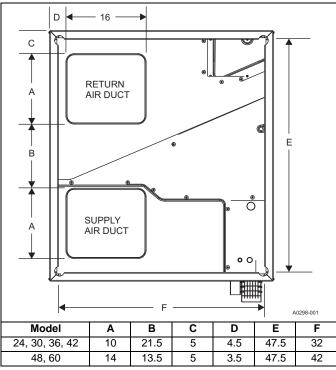


FIGURE 4: Bottom Duct Dimensions (inches)

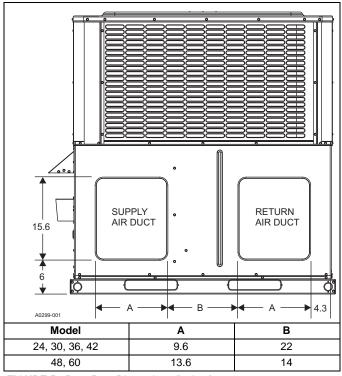


FIGURE 5: Rear Duct Dimensions (inches)

DUCTWORK

These units are adaptable to downflow use as well as rear supply and return air duct openings. To convert to downflow, use the following steps:

- Remove the duct covers found in the bottom return and supply air duct openings.
- Install the duct covers (removed in step one) to the rear supply and return air duct openings.
- 3. Seal duct covers with silicone caulk.

Duct work should be designed and sized according to the methods of the Air Conditioning Contractors of America (ACCA), as set forth in their Manual D.

A closed return duct system shall be used. This shall not preclude use of economizers or ventilation air intake. Flexible joints are recommended to be used in the supply and return duct work to minimize the transmission of vibration and noise.

NOTICE

Be sure to note supply and return openings.

Refer to Figures 5 and 6 for information concerning rear and bottom supply and return air duct openings.

FILTERS

Proper filter size is very important. Filter size, type and pressure drop should always be considered during duct system design.

Single phase units are shipped without a filter or filter racks. It is the responsibility of the installer to secure a filter in the return air ductwork or install a Filter/Frame Kit.

A filter rack and high velocity filters are standard on three phase units.

Filters must always be used and must be kept clean. When filters become dirt laden, insufficient air will be delivered by the blower, decreasing your units efficiency and increasing operating costs and wear-and-tear on the unit and controls.

Filters should be checked monthly; this is especially important since this unit is used for both heating and cooling.

CONDENSATE DRAIN

A condensate trap must be installed in the condensate drain. The plumbing must conform to local codes.

DO NOT use Teflon tape or Pipe thread compound.

A CAUTION

Hand tighten only.

SERVICE ACCESS

Access to all serviceable components is provided at the following locations:

- Coil guards
- Unit top panel
- · Corner posts
- · Blower access panel
- Control access panel
- · Indoor coil access panel
- Compressor access panelHeat exchanger access panel

Refer to Figure 4 for location of these access locations and minimum clearances in Table 4.

A CAUTION

This system uses R-410A Refrigerant which operates at higher pressures than R-22. No other refrigerant may be used in this system. Gage sets, hoses, refrigerant containers and recovery systems must be designed to handle R-410A. If you are unsure, consult the equipment manufacturer. Failure to use R-410A compatible servicing equipment may result in property damage or injury.

A WARNING

Wear safety glasses and gloves when handling refrigerants. Failure to follow this warning can cause serious personal injury.

Refer to Figure 14 for the R-410A Quick Reference Guide.

6

THERMOSTAT

The room thermostat should be located on an inside wall approximately 60" above the floor where it will not be subject to drafts, sun exposure or heat from electrical fixtures or appliances. Sealant should be used behind thermostat to prevent air infiltration. Follow manufacturer's instructions enclosed with the thermostat for general installation procedure. Color coded insulated wires (minimum #18 AWG) should be used to connect thermostat to unit. See Figure 6. Do not use power stealing thermostats.

POWER AND CONTROL WIRING

Field wiring to the unit must conform to provisions of the current N.E.C. ANSI/NFPA No. 70 or C.E.C. and/or local ordinances. The unit must be electrically grounded in accordance with local codes or, in their absence, with the N.E.C./C.E.C. Voltage tolerances which must be maintained at the compressor terminals during starting and running conditions are indicated on the unit Rating Plate and Table 1.

The wiring entering the cabinet must be provided with mechanical strain relief.

A fused disconnect switch should be field provided for the unit. If any of the wire supplied with the unit must be replaced, replacement wire must be of the type shown on the wiring diagram.

Electrical service must be sized properly to carry the load. Each unit must be wired with a separate branch circuit fed directly from the main distribution panel and properly fused.

Refer to Figures 6 and 7 for typical field wiring and to the appropriate unit wiring diagram for control circuit and power wiring information.

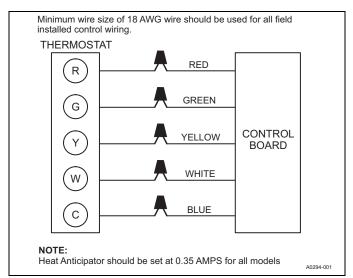


FIGURE 6: Typical Field Control Wiring Diagram For Gas Heat - AC Models

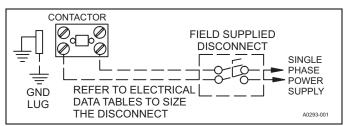


FIGURE 7: Typical Field Power Wiring Diagram

Table 5: Electrical Data

Model	Voltage	Compressor			Outdoor Fan Motor	Indoor Fan Blower Motor	MCA ¹	Max Fuse ² / Breaker ³ Size	
	•	RLA	LRA	MCC	FLA	FLA	(Amps)	(Amps)	
24050	208/230-1-60	8.7	45.0	14.4	1.3	2.6	14.8	20	
24075	208/230-1-60	8.7	45.0	14.4	1.3	3.8	16.0	20	
30050	208/230-1-60	9.8	57.0	15.1	1.3	2.6	16.2	25	
30075	208/230-1-60	9.8	57.0	15.1	1.3	3.8	17.4	25	
36050, 36075	208/230-1-60	13.0	78.0	23.0	1.3	3.8	21.4	30	
36100	208/230-1-60	13.0	78.0	23.0	1.3	5.4	23.0	35	
42075, 42100	208/230-1-60	17.9	112.0	28.0	1.3	5.4	29.1	45	
48065, 48100, 48125	208/230-1-60	21.8	117.0	34.0	1.7	5.4	34.4	50	
60065, 60100, 60125	208/230-1-60	24.4	144.2	38.0	1.7	7.0	39.2	60	

- 1. Minimum Circuit Ampacity.
- 2. Maximum Over Current Protection per standard UL 1995.
- 3. Fuse or HACR circuit breaker size installed at factory or field installed.

Table 6: Physical Data

COMPONENT								ODEL							
		4A24		4A30	Р	CG4A3	36		4A42	Р	CG4B4	18	F	CG4B6	60
NOMINAL TONNAGE	2	.0	2	.5		3.0		3	.5		4.0			5.0	
AHRI Cooling Performance	1				1			1					1		
Gross Capacity @ AHRI A point (MBH)		3.7).1		37.2			3.5		47.7		55.0		
AHRI net capacity (MBH)		2.8		9.0		34.6		41.0		45.5		52.5			
EER		.0		.0		11.0		11.0			11.0			11.0	
SEER	14	1.0		14.0		14.0			1.0		14.0			14.0	
Nominal CFM	80	00		1000		1200			00		1600			2000	
System power (KW)		.1		.6		3.2			.8		4.2			4.8	
Refrigerant type	R4	10A		10A		R410A			10A		R410A			R410A	l .
Refrigerant charge (lb-oz)	5	-4	9	-2		8-3		9	-4		14-4			14-2	
AHRI Gas Heat Performance															
Heating model	50	75	50	75	50	75	100	75	100	65	100	125	65	100	125
Heat input (K Btu)	50.0	75.0	50.0	75.0	50.0	75.0	100.0	75.0	100.0	65.0	100.0	125.0	65.0	100.0	125.0
Heat output (K Btu)	40	60	40	60	40	60	80	60	80	52	80	100	52	80	100
AFUE %	81.0	81.0	81.0	81.0	81.0	81.0	81.0	81.0	81.0	81.0	81.0	81.0	81.0	81.0	81.0
No. burners	2	3	2	3	2	3	4	3	4	2	3	4	2	3	4
No. stages	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Temperature Rise Range (°F)	40	-70	40	-70	35-65	40	-70	40	-70		40-70			40-70	
Max. Static Pressure (in. w.c.)	0	.5	0	.5		0.5		0	.5		0.5			0.5	
Max. Outlet Air Temp. (°F)		30		30		180			30		180			180	
Gas piping connection (in.)		/2		/2		1/2			/2		1/2			1/2	
Dimensions (inches)	<u> </u>				<u> </u>	.=		<u> </u>					<u> </u>		
Length	51-	1/4	51-	1/4		51-1/4		51-	1/4		51-1/4			51-1/4	
Width		3/4		3/4		35-3/4			3/4		45-3/4		45-3/4		
		·3/4 ·7		.7		47			9		53			55	
Height					445		400			405		F00	500		F0F
Operating WT. (lbs.)	359	366	379	386	415	422	426	442	446	495	503	508	522	530	535
Compressors			_		1	<u> </u>					0 "		1	0 "	
Туре	Re	cip	Re	cip		Recip		Sc	roll		Scroll			Scroll	
Condenser Coil Data					T	47.0							1		
Face area (Sq. Ft.)		5.1		7.0	17.0			7.0		23.8			26.0		
Rows		2		3	3		3		3		3				
Fins per inch		6		6	16		16		16		16				
Tube diameter		/8		/8		3/8		3/8		3/8		3/8			
Circuitry Type	Inter	laced	Inter	laced	Ir	nterlace	ed	Inter	aced	li	nterlace	ed	I	nterlace	ed
Evaporator Coil Data			1												
Face area (Sq. Ft.)		.4		.4		3.4			.4		4.4			4.4	
Rows	2	2	;	3		3		;	3	3			3		
Fins per inch		6		6		16		16			16			16	
Tube diameter	3	/8	3	8/8		3/8		3	/8		3/8			3/8	
Circuitry Type		laced		laced	Ir	nterlace	d	Inter		li	nterlace	ed	I	nterlace	ed
Refrigerant control	T)	ΚV	T)	ΧV		TXV		T)	<v< td=""><td></td><td>TXV</td><td></td><td></td><td>TXV</td><td></td></v<>		TXV			TXV	
Condenser Fan Data															
Fan diameter (Inch)	2	4	2	:4		24		2	4		26			26	
Туре	Pr	ор	Pr	ор		Prop		Pr	ор		Prop			Prop	
Drive type	Dir	ect	Dir	ect		Direct		Dir	ect		Direct			Direct	
No. speeds		1		1		1			1		1			1	
Motor HP each	1	/4	1	/4		1/4		1	/4		1/3			1/3	
RPM	8	50	8	50		850		8	50		850			850	
Nominal total CFM	24	00	24	00		2400		24	00		3200			3200	
Direct Drive Evaporator Fan Data					•								•		
Fan Size (Inch)	11	x 8	11	x 8		11 x 10)	11 2	< 10		11 x 10)		11 x 10)
Туре		ifugal		rifugal		entrifug			ifugal		entrifug		С	entrifuç	
Motor HP each	1/3	1/2	1/3 1/2			/2	3/4		/4	3/4			1		
RPM		Max		Max		200 Ma	IX		Max	1	200 Ma	ax	1	200 Ma	ax
Frame size		8		-8		48			8	<u> </u>	48			48	
Filters	l	*		*	ı			l					ı		
1 11013	Eial-L-	ا مالحميي	l ovete	ol filt-	n muct !	NO 01	1000	no+ +	woo c -l '	200 f	0.0:=	looit · ti	rough	dion a	blc
Quantity - Size					s must b a filter										
Quantity - Size				-	a fliter er sizes:				บเเธนใโ โ	ne msti	uctions	suppile	eu with	ıııdı Kil	IUI
	replace	SIII CIIL I	iitoi SIZI	oo. i litt	, JIZES.	N-20X	∠∪, ن≃ٰ	LUAUU.							

COMPRESSORS

The compressor used in this product is specifically designed to operate with R-410A Refrigerant and cannot be interchanged.

A CAUTION

This system uses R-410A Refrigerant which operates at higher pressures than R-22. No other refrigerant may be used in this system.

The compressor uses polyolester (POE oil), Mobile 3MA POE. This oil is extremely hydroscopic, meaning it absorbs water readily. POE oil can absorb 15 times as much water as other oils designed for HCFC and CFC refrigerants. If refrigerant circuit is opened, take all necessary precautions to avoid exposure of the oil to the atmosphere.

A CAUTION

Do not leave the system open to the atmosphere. Unit damage could occur due to moisture being absorbed by the **POE oil** in the system. This type of oil is highly susceptible to moisture absorption

POE (polyolester) compressor lubricants are known to cause long term damage to some synthetic roofing materials.

A CAUTION

Exposure, even if immediately cleaned up, may cause embrittlement (leading to cracking) to occur in one year or more. When performing any service that may risk exposure of compressor oil to the roof, take precautions to protect roofing.

Procedures which risk oil leakage include, but are not limited to, compressor replacement, repairing refrigerant leaks, replacing refrigerant components such as filter drier, pressure switch, metering device or coil

Units are shipped with compressor mountings which are factoryadjusted and ready for operation.

A CAUTION

Do not loosen compressor mounting bolts.

GAS HEAT

These single stage gas-fired heat sections have direct spark ignition.

GAS PIPING

Proper sizing of gas piping depends on the cubic feet per hour of gas flow required, specific gravity of the gas and the length of run. National Fuel Gas Code Z223.1 or CSA B149.1 should be followed in all cases unless superseded by local codes or gas company requirements. Refer to Tables 7 and 8.

The BTU content of the gas may differ with locality. The value should be checked with the local gas utility.

NOTICE

There may be a local gas utility requirement specifying a minimum diameter for gas piping. All units require a 1/2 inch pipe connection at the gas valve.

GAS CONNECTION

The gas supply line should be routed through the 1-5/8" hole located on the right side of the unit. See Figure 3 for the location. The unit is supplied with a rubber grommet that fits in this hole and is used to seal around the gas pipe. THIS GROMMET MUST BE INSTALLED IN ORDER TO PREVENT LEAKAGE OF AIR AND WATER INTO THE HEATING/CONTROLS COMPARTMENT.

Gas piping requirements:

- A drip leg and a ground joint union must be installed in the gas piping.
- When required by local codes, a manual shut-off valve may have to be installed outside of the unit.
- 3. Use wrought iron or steel pipe for all gas lines. Pipe thread sealant should be applied sparingly to male threads only.

Table 7: Natural Gas Pipe Sizing Chart¹

Length	Nominal Inches Iron Pipe Size								
In Feet	1/2"	3/4"	1"	1-1/4"					
10	132	278	520	1,050					
20	92	190	350	730					
30	73	152	285	590					
40	63	130	245	500					
50	56	115	215	440					
60	50	105	195	400					
70	46	96	180	370					
80	43	90	170	350					
90	40	84	160	320					
100	38	79	150	305					

^{1.} Maximum capacity of pipe in cubic feet of gas per hour (based upon a pressure drop of 0.3 inch water column and 0.6 specific gravity gas).

Table 8: Propane (LP) Gas Pipe Sizing Chart¹

Length	N	ominal Inches	Iron Pipe Siz	ze
In Feet	1/2"	3/4"	1"	1-1/4"
10	275	567	1071	2,205
20	189	393	732	1496
30	152	315	590	1212
40	129	267	504	1039
50	114	237	448	913
60	103	217	409	834
70	96	196	378	771
80	89	185	346	724
90	83	173	322	677
100	78	162	307	630

Maximum capacity of pipe in thousands of BTU per hour (based upon a pressure drop of 0.5 inch water column).

A CAUTION

If flexible stainless steel tubing is allowed by the authority having jurisdiction, wrought iron or steel pipe must be installed at the gas valve and extend a minimum of two (2) inches outside of the unit casing.

A WARNING

Natural gas may contain some propane. Propane being an excellent solvent, will quickly dissolve white lead or most standard commercial compounds. Therefore, a special pipe thread sealant must be applied when wrought iron or steel pipe is used. Shellac base compounds such as gaskoloc or stalastic, and compounds such as Rectorseal # 5, Clyde's or John Crane may be used.

4. All piping should be cleaned of dirt and scale by hammering on the outside of the pipe and blowing out the loose dirt and scale. Before initial start-up, be sure that all of the gas lines external to the unit have been purged of air. 5. The gas supply should be a separate line and installed in accordance with all applicable safety codes. After the gas connections have been completed, open the main shut-off valve admitting normal gas pressure to the gas valve. Check all joints for leaks with soap solution or other material suitable for the purpose. NEVER USE AN OPEN FLAME.

A WARNING

FIRE OR EXPLOSION HAZARD

Failure to follow the safety warning exactly could result in serious injury, death or property damage.

Never test for gas leaks with an open flame. use a commercially available soap solution made specifically for the detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury or loss of life.

- 6. The unit and its equipment shutoff valve must be disconnected from the gas supply system during and pressure testing of that system at test pressures in excess of 1/2 psi (3.48 kPA)
- 7. The unit must be isolated from the gas supply piping system by closing its individual manual shut-off valve before conducting any pressure testing of the gas supply piping system at test pressures equal to or less than 1/2 psig (3.48 kPA).

FLUE VENT AND AIR INTAKE HOOD

The flue vent hood and air intake hoods are shipped loose. These hoods must be installed to assure proper unit operation. The hoods must be fastened to the outside of the side gas control/electrical compartment with the screws provided. See Figure 8.

A WARNING

Flue hood surfaces may be hot.

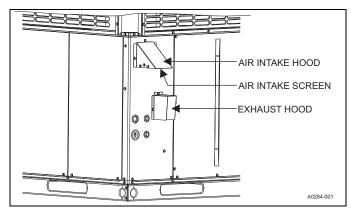


FIGURE 8: Flue Vent Outlet Air Hood

A CAUTION

The flue exhaust hood must be properly installed and within the recommended clearances. Further communications and action must be given to the home or building owner(s) to eliminate any unauthorized human contact around this area during the heating cycle. Flue hood surfaces and the immediate area reach high temperatures during the heating cycle.

Table 9: Natural Gas Application Data

Available On Models	Input (MBH) ¹	Output (MBH) High Fire	Gas Rate ² Ft. ³ /Hr.	Number of Burners	Temp. Rise ⁰F At Full Input ³		
	High Fire	ingii i iie	High Fire/Low Fire	Durners	Min.	Max.	
2, 2-1/2 Tons	50	41	46	2	40	70	
3 Tons	50	41	46	2	35	65	
4, 5 Tons	65	53	60	2	40	70	
2, 2-1/2, 3, 3-1/2 Tons	75	61	70	3	40	70	
3, 3-1/2 Tons	100	81	93	4	40	70	
4, 5 Tons	100	81	93	3	40	70	
4, 5 Tons	125	101	116	4	40	70	

- 1. Heating capacity valid for elevations up to 2000 feet above sea level. For elevations above 2,000 feet, rated capacity should be reduced by 4% for each 1,000 feet above sea level.
- 2. Based on 1075 BTU/Ft.3.
- 3. The air flow must be adequate to obtain a temperature rise within the range shown. Continuous return air temperature should not be below 55°F.

Table 10: Propane¹ (LP) Gas Application Data

Available On Models	Input Capacity (MBH) ²	Output Capacity (MBH)	Gas Rate ³ Ft. ³ /Hr.	Number of Burners	Temp. Rise ^o F At Full Input ⁴		
	High Fire/Low Fire	High Fire/Low Fire	High Fire/Low Fire	Durners	Min.	Max.	
2, 2-1/2 Tons	50	41	20	2	40	70	
3 Tons	50	41	20	2	35	65	
4, 5 Tons	65	53	26	2	40	70	
2, 2-1/2, 3, 3-1/2 Tons	75	61	30	3	40	70	
3, 3-1/2 Tons	100	81	40	4	40	70	
4, 5 Tons	100	81	40	3	40	70	
4, 5 Tons	125	101	50	4	40	70	

- 1. Propane applications are accomplished by field installation of a Propane Conversion Accessory, Model 1NP0701 for 2 to 3.5 Ton units and Model 1NP0702 for 4 and 5 Ton units.
- 2. Heating capacity valid for elevations up to 2,000 feet above sea level. For elevations above 2,000 feet, rated capacity should be reduced by 4% for each 1,000 feet above sea level.
- 3. Based on 2500 BTU/Ft.3.
- 4. The air flow must be adequate to obtain a temperature rise within the range shown. Continuous return air temperature should not be below 55°F.

SECTION V: AIRFLOW PERFORMANCE

Table 11: Airflow - Side Duct Application

Model	Motor Speed	External Static Pressure (Inches WC) 0.1								
	Motor Speed								0.8	
	L ov. (1)	SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	SCFN	
24050	Low (1)	732	667	624	567	517	470	415	369	
	Low/Medium (2)	818	771	723	674	628	579	530	482	
24050	Medium (3)	823	774	721	676	631	583	533	505	
	Medium/High (4)	994	948	906	865	823	778	739	700	
	High (5)	1148	1108	1071	1035	996	960	925	901	
	Low (1)	887	847	802	750	705	664	613	563	
	Low/Medium (2)	978	941	898	850	803	759	713	667	
24075	Medium (3)	1171	1114	1074	1039	993	949	906	864	
	Medium/High (4)	1349	1297	1265	1224	1185	1146	1107	1063	
	High (5)	1487	1462	1392	1331	1318	1281	1241	1201	
	Low (1)	700	657	599	554	512	461	411	365	
	Low/Medium (2)	906	868	825	779	735	692	650	608	
30050	Medium (3)	992	951	911	868	826	787	747	712	
	Medium/High (4)	1075	1032	1000	958	918	874	837	800	
	High (5)	1136	1089	1053	1018	978	941	903	869	
	Low (1)	1076	1020	984	943	903	859	819	779	
	Low/Medium (2)	1102	1048	1010	974	934	890	850	810	
30075	Medium (3)	1191	1140	1112	1076	1038	1000	958	919	
	Medium/High (4)	1201	1225	1187	1151	1118	1080	1041	1002	
	High (5)	1370	1329	1283	1271	1209	1176	1143	1109	
	Low (1)	1003	952	904	851	790	730	674	633	
	Low/Medium (2)	1180	1133	1085	1042	995	942	889	834	
36050	Medium (3)	1259	1209	1166	1126	1084	1032	980	928	
	Medium/High (4)	1314	1271	1229	1186	1144	1097	1049	998	
	High (5)	1506	1471	1403	1389	1345	1305	1262	1216	
	Low (1)	1225	1174	1131	1090	1046	993	941	888	
	Low/Medium (2)	1259	1209	1166	1126	1084	1032	980	928	
36075	Medium (3)	1314	1271	1229	1186	1144	1097	1049	998	
	Medium/High (4)	1348	1306	1259	1222	1179	1133	1086	1036	
	High (5)	1506	1471	1403	1389	1345	1305	1262	1216	
	Low (1)	1342	1302	1260	1217	1178	1134	1082	1034	
	Low/Medium (2)	1425	1368	1332	1293	1251	1208	1163	1113	
36100	Medium (3)	1554	1503	1465	1423	1386	1346	1302	1257	
	Medium/High (4)	1658	1599	1588	1530	1495	1454	1414	1373	
	High (5)	1966	1914	1862	1810	1757	1705	1653	1600	
	Low (1)	1315	1266	1229	1194	1156	1117	1080	1036	
	Low/Medium (2)	1436	1382	1342	1304	1262	1220	1179	1131	
42075	Medium (3)	1458	1406	1365	1327	1286	1244	1203	1155	
	Medium/High (4)	1573	1523	1484	1445	1408	1367	1327	1279	
	High (5)	1966	1914	1862	1810	1757	1705	1653	1600	
	Low (1)	1436	1382	1342	1304	1262	1220	1179	1131	
	Low/Medium (2)	1544	1492	1455	1416	1376	1336	1294	1248	
42100	Medium (3)	1573	1523	1484	1445	1408	1367	1327	1279	
.2100	Medium/High (4)	1681	1640	1599	1557	1517	1478	1436	1393	
	High (5)	1935	1887	1834	1788	1743	1701	1651	1593	
	Low (1)		1009	980	946	915	878	844	779	
	, ,	1046								
10065	Low/Medium (2)	1295	1250	1213	1172	1133	1087	1045	964	
48065	Medium (3)	1620	1564	1517	1466	1418	1360	1308	1206	
	Medium/High (4)	1798	1722	1669	1620	1572	1527	1480	1413	

Continued on next page.

Table 11: Airflow - Side Duct Application (Continued)

		External Static Pressure (Inches WC)								
Model	Motor Speed	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	
		SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	
	Low (1)	1620	1564	1517	1466	1418	1360	1308	1206	
	Low/Medium (2)	1694	1630	1580	1530	1482	1430	1380	1292	
48100	Medium (3)	1798	1722	1669	1620	1572	1527	1480	1413	
	Medium/High (4)	1835	1758	1703	1653	1604	1558	1511	1442	
	High (5)	2146	2085	2025	1960	1872	1862	1798	1735	
	Low (1)	1620	1564	1517	1466	1418	1360	1308	1206	
	Low/Medium (2)	1798	1722	1669	1620	1572	1527	1480	1413	
48125	Medium (3)	1922	1863	1804	1754	1724	1658	1612	1559	
	Medium/High (4)	2001	1952	1890	1839	1820	1742	1696	1651	
	High (5)	2146	2085	2025	1960	1872	1862	1798	1735	
	Low (1)	1073	1043	1009	988	963	941	917	892	
	Low/Medium (2)	1329	1292	1250	1223	1192	1165	1136	1105	
60065	Medium (3)	2054	1998	1934	1890	1843	1801	1757	1710	
	Medium/High (4)	2195	2144	2098	2049	2003	1955	1883	1868	
	High (5)	2445	2388	2306	2293	2235	2178	2129	2077	
	Low (1)	1730	1682	1628	1592	1552	1517	1479	1439	
	Low/Medium (2)	1858	1807	1749	1710	1667	1629	1589	1546	
60100	Medium (3)	2054	1998	1934	1890	1843	1801	1757	1710	
	Medium/High (4)	2195	2144	2098	2049	2003	1955	1883	1868	
	High (5)	2445	2388	2306	2293	2235	2178	2129	2077	
	Low (1)	2063	2008	1943	1899	1851	1809	1763	1717	
	Low/Medium (2)	2130	2084	2032	1983	1927	1951	1860	1815	
60125	Medium (3)	2195	2144	2098	2049	2003	1955	1883	1868	
	Medium/High (4)	2275	2252	2169	2154	2112	2065	1989	1976	
	High (5)	2445	2388	2306	2293	2235	2178	2129	2077	

^{1.} Airflow tested with dry coil conditions, without air filters, at 230 volts

^{2.} Applications above 0.8" w.c. external static pressure are not recommended.

^{3.} Brushless DC high efficiency standard ECM blower motor used for all indoor blower assemblies.

^{4.} Minimal variations in airflow performance data results from operating at 208 volts. Data above may be used in those cases.

^{5.} Heating applications tested at 0.50" w.c. esp, and cooling applications tested at 0.30" w.c.esp per standards.

Table 12: Airflow - Bottom Duct Application

		External Static Pressure (Inches WC)								
Model	Motor Speed	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	
		SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	
	Low (1)	754	710	665	611	560	491	445	391	
	Low/Medium (2)	867	815	773	720	677	622	559	505	
24050	Medium (3)	951	908	868	828	781	735	686	631	
	Medium/High (4)	1024	982	942	902	861	817	775	721	
	High (5)	1204	1159	1121	1085	1051	1013	975	938	
	Low (1)	899	869	827	782	734	685	630	575	
	Low/Medium (2)	1033	960	924	879	834	787	735	685	
24075	Medium (3)	1186	1133	1095	1056	1016	975	935	891	
	Medium/High (4)	1357	1322	1284	1248	1211	1174	1127	1087	
	High (5)	1480	1439	1404	1367	1369	1299	1264	1226	
	Low (1)	726	676	622	575	520	467	410	376	
	Low/Medium (2)	928	886	841	795	745	706	658	607	
30050	Medium (3)	1021	983	942	900	855	811	770	729	
00000	Medium/High (4)	1109	1071	1029	995	949	908	864	826	
	High (5)	1170	1134	1029	1061	1020	978	938	899	
	Low (1)	1076	1042	1090	969	930	890	849	808	
	Low/Medium (2)	1104	1042	1009	987	947	908	869	830	
30075	Medium (3)	1205	1170	1136	1098	1060	1025	985	943	
30073	Medium/High (4)	1285	1251	1213	1179	1141	1104	1065	1027	
	High (5)	1406	1375	1341	1306	1271	1236	1198	1163	
	Low (1)	1008	962	916	861	807	757	700	650	
			1148		1055		955		863	
26050	Low/Medium (2) Medium (3)	1190		1106	1137	1008		914 994	952	
36050		1262	1223 1282	1181	1202	1091	1044	1067		
	Medium/High (4)	1324 1517		1245		1161	1112		1018	
	High (5)		1475 1186	1447	1400	1357	1318	1275	1232 912	
	Low (1)	1231	1225	1146	1103	1069	1030 1046	977 1008	960	
26075	Low/Medium (2)	1270		1189	1140	1098				
36075	Medium (3)	1317	1286	1245	1198	1151	1110	1064	1024	
	Medium/High (4)	1358	1317	1275	1238	1197	1148	1105	1057	
	High (5)	1517	1475	1447	1400	1357	1318	1275	1232	
	Low (1)	1340	1299	1264	1224	1182	1182	1097	1049	
	Low/Medium (2)	1409	1368	1334	1291	1253	1201	1173	1128	
36100	Medium (3)	1527	1492	1470	1419	1385	1343	1299	1250	
	Medium/High (4)	1663	1585	1594	1601	1521	1480	1440	1400	
	High (5)	1930	1892	1853	1805	1760	1696	1625	1553	
	Low (1)	1332	1295	1263	1222	1185	1148	1110	1063	
	Low/Medium (2)	1457	1419	1376	1340	1299	1253	1215	1160	
42075	Medium (3)	1451	1412	1371	1339	1296	1257	1211	1165	
	Medium/High (4)	1568	1524	1491	1464	1425	1383	1345	1296	
	High (5)	1978	1937	1891	1837	1785	1725	1656	1604	
	Low (1)	1455	1414	1379	1335	1294	1254	1212	1160	
	Low/Medium (2)	1566	1532	1492	1455	1416	1372	1333	1280	
42100	Medium (3)	1565	1530	1491	1458	1419	1381	1336	1290	
	Medium/High (4)	1675	1641	1606	1578	1535	1495	1455	1412	
	High (5)	1946	1909	1863	1815	1771	1721	1654	1595	
	Low (1)	1032	999	970	938	910	879	843	808	
	Low/Medium (2)	1272	1236	1204	1165	1129	1081	1037	968	
48065	Medium (3)	1611	1574	1518	1494	1439	1405	1357	1266	
	Medium/High (4)	1892	1777	1771	1701	1639	1617	1565	1489	
	High (5)	2131	2058	1998	1949	1892	1840	1788	1728	

Continued on next page.

Table 12: Airflow - Bottom Duct Application (Continued)

		External Static Pressure (Inches WC)								
Model	Motor Speed	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	
		SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	
	Low (1)	1598	1548	1502	1454	1410	1362	1307	1251	
	Low/Medium (2)	1663	1612	1568	1522	1476	1422	1370	1297	
48100	Medium (3)	1789	1733	1670	1650	1596	1578	1535	1483	
	Medium/High (4)	1931	1814	1808	1736	1673	1650	1597	1519	
	High (5)	2131	2058	1998	1949	1892	1840	1788	1728	
	Low (1)	1598	1548	1502	1454	1410	1362	1307	1251	
	Low/Medium (2)	1766	1703	1656	1611	1566	1518	1469	1419	
48125	Medium (3)	1912	1875	1805	1787	1750	1713	1672	1636	
	Medium/High (4)	2105	2014	2006	1931	1898	1845	1793	1739	
	High (5)	2131	2058	1998	1949	1892	1840	1788	1728	
	Low (1)	1026	999	989	950	907	907	886	862	
	Low/Medium (2)	1263	1230	1192	1165	1167	1101	1099	1071	
60065	Medium (3)	1987	1933	1861	1817	1820	1715	1725	1651	
	Medium/High (4)	2114	2050	2047	1974	1899	1889	1920	1866	
	High (5)	2369	2308	2249	2183	2126	2088	2034	1990	
	Low (1)	1655	1612	1596	1531	1461	1462	1429	1391	
	Low/Medium (2)	1766	1720	1667	1629	1632	1539	1537	1498	
60100	Medium (3)	1987	1933	1861	1817	1820	1715	1725	1651	
	Medium/High (4)	2114	2050	2047	1974	1899	1889	1920	1866	
	High (5)	2369	2308	2249	2183	2126	2088	2034	1990	
	Low (1)	1973	1924	1905	1826	1743	1744	1703	1660	
	Low/Medium (2)	2024	1983	1937	1889	1886	1843	1799	1759	
60125	Medium (3)	2123	2075	2019	1970	1978	1862	1849	1804	
	Medium/High (4)	2191	2154	2117	2075	2002	1995	2028	1974	
	High (5)	2369	2308	2249	2183	2126	2088	2034	1990	

- 1. Airflow tested with dry coil conditions, without air filters, at 230 volts
- 2. Applications above 0.8" w.c. external static pressure are not recommended.
- 3. Brushless DC high efficiency standard ECM blower motor used for all indoor blower assemblies.
- 4. Minimal variations in airflow performance data results from operating at 208 volts. Data above may be used in those cases.
- 5. Heating applications tested at 0.50" w.c. esp, and cooling applications tested at 0.30" w.c.esp per standards.

Table 13: Additional Static Resistance

Size (Tons)	CFM	Wet Indoor Coil	Economizer ¹	Filter/Frame Kit
	500	0.01	0.00	0.01
	600	0.01	0.00	0.02
	700	0.01	0.00	0.04
024 (2.0)	800	0.02	0.01	0.06
024 (2.0)	900	0.03	0.01	0.08
	1000	0.04	0.01	0.10
	1100	0.05	0.01	0.13
	1200	0.06	0.02	0.16
	700	0.01	0.00	0.04
	800	0.02	0.01	0.06
	900	0.03	0.01	0.08
030 (2.5)	1000	0.04	0.01	0.10
	1100	0.05	0.01	0.13
	1200	0.06	0.02	0.16
	1300	0.07	0.03	0.17
	700	0.01	0.00	0.04
	800	0.02	0.01	0.06
	900	0.03	0.01	0.08
000 (0.0)	1000	0.04	0.01	0.10
036 (3.0)	1100	0.05	0.01	0.13
	1200	0.06	0.02	0.16
	1300	0.07	0.03	0.17
	1400	0.08	0.04	0.18
	1100	0.02	0.02	0.04
	1200	0.03	0.02	0.04
	1300	0.04	0.02	0.05
	1400	0.05	0.03	0.05
	1500	0.06	0.04	0.06
042 (3.5)	1600	0.07	0.04	0.07
	1700	0.07	0.04	0.08
	1800	0.08	0.04	0.09
	1900	0.09	0.05	0.10
	2000	0.09	0.05	0.11
	1100	0.02	0.02	0.04
	1200	0.03	0.02	0.04
	1300	0.04	0.02	0.05
	1400	0.05	0.03	0.05
0.40 (4.0)	1500	0.06	0.04	0.06
048 (4.0)	1600	0.07	0.04	0.07
	1700	0.07	0.04	0.08
	1800	0.08	0.04	0.09
	1900	0.09	0.05	0.10
	2000	0.09	0.05	0.11
	1100	0.02	0.02	0.04
	1200	0.03	0.02	0.04
	1300	0.04	0.02	0.05
	1400	0.05	0.03	0.05
200 (= -)	1500	0.06	0.04	0.06
060 (5.0)	1600	0.07	0.04	0.07
	1700	0.07	0.04	0.08
	1800	0.08	0.04	0.09
	1900	0.09	0.05	0.10
	2000	0.09	0.05	0.11

The pressure drop through the economizer is greater for 100% outdoor air than for 100% return air. If the resistance of the return air duct is less than 0.25 IWG, the unit will deliver less CFM during full economizer operation.

SECTION VI: OPERATION

The unit is controlled by a conventional heating/cooling thermostat. If an electronic thermostat is used, make sure it has a common connection. DO NOT use a power stealing thermostat.

HEATING SEQUENCE OF OPERATION

Heating

The control board begins a call for heat when W is energized (connected to R).

The control checks to see if the pressure switch is open. If the pressure switch is closed, the control board flashes "2" on the LED and waits indefinitely for it to open. When the pressure switch is sensed as open, the control begins pressure switch proving period. If the call for heat is removed, the control goes back to Standby.

Pressure Switch Proving

The control board energizes the induced draft motor and waits for the pressure switch to close. When the pressure switch closes, the control begins Pre-purge period. If the call for heat is removed, the control deenergizes the inducer without post-purge and returns to standby.

If the pressure switch does not close within 5 seconds of inducer energizing, the control board flashes "3" on the LED. If the pressure switch does not close within 60 seconds of inducer energizing, the control shuts off the inducer for 60 seconds, then energizes the inducer for another 60 seconds in an attempt to close the pressure switch. This cycle continues indefinitely until either the pressure switch is proved closed, or the call for heat ends.

Pre-purge

The control board monitors the pressure switch and ensures it remains closed during pre-purge. If the pressure switch opens, the control goes back to pressure switch proving mode. The control waits for a 15 second pre-purge period, then begins the ignition trial.

Ignition Trial Period

The control board energizes the gas valve and spark outputs for a 5 second Ignition trial. The control de-energizes the spark when flame is sensed and enters a flame stabilization period.

If flame is not established within the ignition trial period, the control deenergizes the spark and gas valve and begins an inter-purge period before attempting another ignition trial.

If the call for heat is removed during an ignition trial period, the control immediately de-energizes spark and gas. The control runs the inducer motor through a post purge period before de-energizing.

If the pressure switch opens during an ignition trial period, the control immediately de-energizes spark and gas. The control begins pressure switch proving before an inter-purge and reignition attempt.

Heat Blower On Delay

The control board waits for 30 seconds and then energizes the indoor blower heat speed. Blower on delay time begins at the start of flame proving period in the trial for ignition.

If the thermostat demand for heat is removed, the control de-energizes the gas valve, energizes the blower on heat speed and initiates a post purge and heat blower off delay.

Filter pressure drop based on standard filter media tested at velocities not to exceed 300 ft/min.

Main Burner Operation

The control board keeps the main gas valve and induced draft motor energized while continuously monitoring the call for heat, pressure switch, and flame status.

If the call for heat (W) is removed, the control de-energizes the gas valve, begins post purge and heat blower off delay.

If the pressure switch opens, the control de-energizes the gas valve and begins pressure switch proving mode.

If flame is removed, the control de-energizes the gas valve within 2.0 seconds and counts the flame loss. If flame has been lost less than 5 times, the control attempts re-ignition after a 15 second inter-purge period. If flame has been lost more than 5 times within the same call for heat, the control board locks out flashing "8" on the LED. Post Purge

The control board runs the induced draft motor for a 15 second postpurge period, and then de-energizes the inducer. If a call for heat occurs during post-purge, the control finishes the postpurge, and immediately begins the next ignition sequence.

Heat Blower Off Delay

After a heating sequence the control board de-energizes the indoor blower motor after a delay time as selected by a movable shunt (60, 90, 120 or 180 seconds). Blower off timing begins when the thermostat is satisfied and removes (W) the call for heat. The control returns to standby when the blower off delay is complete.

If the thermostat call for heat returns before the blower off delay is complete, the control begins an ignition sequence with prepurge while the blower off delay continues.

Lockout

While in lockout, the control board keeps the main gas valve and induced draft motor de-energized.

Lockouts due to failed ignition or flame losses may be reset by removing the call for heat (W) for more than 1 second, or by removing power from the control for over 0.25 seconds. The control will automatically reset lockout after 60 minutes.

Lockouts due to detected internal control faults will reset after 60 minutes or power interruption. Cooling operations are available during a heating lockout.

High Temperature Limit Switch

Any time the high temperature limit switch is open less than 5 minutes the control board will run the indoor blower motor on heat speed, run the inducer, de-energize the gas valve, and flash "4" on the LED. When the high temperature switch closes, the control will restart the ignition sequence beginning with pre-purge.

If the limit switch has been open more than 5 minutes the control will de-energize the inducer, continue to operate the indoor blower motor on heat speed, and flash "11" on the LED

Rollout Switch

If the limit circuit is open for more than 15 minutes, the control board will flash "5" on the LED. The blower output will be energized during an open rollout condition.

If the rollout switch is reset, the control shall remain locked out until power is removed or a call for heat (W) is removed.

Rollout switch lockout shall not reset automatically.

Power Interruptions

Power interruptions of any duration shall not cause lockout or any operation requiring manual intervention.

Flame present with Gas off

If flame is sensed for longer than 4.0 seconds during a period when the gas valve should be closed, the control will enter lockout flashing "1" on the LED. The control will energize the inducer blower while the flame is sensed.

GAS VALVE FAULT

If the main valve output is sensed to be energized for more than 1 second when commanded to be off, the control de-energizes the induced draft motor (if flame is not present) to attempt to open the pressure switch to de-energize the gas valve. If the main gas valve is still sensed as energized after the inducer has been off for 10 seconds, the control re-energizes the inducer to vent the unburned gas. The control enters a hard lockout flashing "10" on the LED.

The only way to recover from a hard lockout is to remove and reapply 24VAC power to the control board.

Safety Controls

The control circuit includes the following safety controls:

- Limit Switch (LS) This control is located inside the blower compartment and protrudes into the heat exchanger compartment and is set to open at the temperature indicated in the Temperature Controls Table of the unit wiring diagram. It resets automatically. The limit switch operates when a high temperature condition occurs, thus shutting down the ignition control, closes the main gas valve and energizes the blower.
- Pressure Switch (PS) If the draft motor should fail, the pressure switch prevents the ignition control and gas valve from being energized.
- Flame Sensor The flame sensor is located on the left-most burner. If an ignition control fails to detect a signal from the flame sensor indicating the flame is properly ignited, then the main gas valve will close
- Rollout Switch (RS) This switch is located on the burner assembly.
 In the event of a sustained main burner flame rollout, the control will close the main gas valve. The is a manual reset type switch.

NOTICE

The manual reset Rollout Switch (RS) must be reset before allowing furnace operation.

Table 14: Ignition Control Board Flash Codes

Flash Code	Description								
Normal Operation									
Green Heartbeat	Standby mode								
Amber Heartbeat	Call for furnace heat active								
	Operational Faults								
Steady ON (any color)	Control failure								
Rapid Amber Flash	Low flame current <1.5 VDC at test pad								
1 Red Flash	Flame sensed with gas valve off								
2 Red Flashes	Pressure switch closed with inducer off								
3 Red Flashes	Pressure switch open with inducer on								
4 Red Flashes	Limit switch or rollout switch open								
5 Red Flashes	Limit switch or rollout switch open >15 minutes								
6 Red Flashes	Pressure switch cycle lockout								
7 Red Flashes	Lockout due to failed ignition								
8 Red Flashes	Lockout due to too many flame dropouts								
10 Red Flashes	Gas valve fault								
11 Red Flashes	Limit/Rollout switch open between 5 and 15								
TI NEU FIASITES	minutes								
	Wiring Related Faults								
9 Red Flashes	Incorrect low voltage polarity								
4 Amber Flashes	Y thermostat demand without a G								

COOLING SEQUENCE OF OPERATIONS

When the thermostat calls for COOL, the thermostat terminals G and Y are energized, which signals the compressor, outdoor fan and indoor blower to run.

With a call for Y, the circulating fan is energized at cooling speed.

When the thermostat is satisfied, terminals G and Y are de-energized, de-energizing the compressor and outdoor fan.

After a cool fan off delay timing of 30 seconds, the circulating fan is deenergized.

Safety Controls

The control circuit includes the following safety controls:

High Pressure Switch (HP) - This switch protects against excessive discharge pressures due to a blocked condenser coil or a condenser motor failure (opens at 650 ± 25 psig and closes at 450 ± 25 psig).

The above pressure switches are specifically designed to operate with R-410A systems. R-22 pressure switches must not be used as replacements for the R-410A pressure switches.

A WARNING

The ability to properly perform maintenance on this equipment requires certain expertise, mechanical skills, tools and equipment. If you do not possess these, do not attempt to perform any maintenance other than those procedures recommended in this Installation Manual. Failure to heed this warning could result in serious injury and possible damage to this equipment.

Circulating Fan

When the thermostat calls for FAN, the thermostat terminal G is energized signaling the circulating fan to run at the G-Speed airflow.

If a call for COOL occurs (Y), the circulating fan switches to run at the Y-Speed airflow.

If a call for HEAT occurs (W), the circulating fan switches to W-Speed after a 30 second delay.

When the thermostat ends the call for FAN, the thermostat terminal G is de-energized, de-energizing the circulating fan.

START-UP

Prestart Check List

Complete the following checks before starting the unit.

- 1. Check the type of gas being supplied. Be sure that it is the same as listed on the unit nameplate.
- Make sure that the vent outlet air hood and air intake hood has been properly installed.

Operating Instructions

- 1. STOP! Read the information on the unit safety label.
- 2. Set the thermostat to the OFF position.
- 3. Turn off all electrical power to the unit.
- DO NOT try to light the burners by hand. This appliance is equipped with an ignition device which automatically lights the burners
- 5. Remove the access panel.
- 6. Turn the gas valve switch to the OFF position.
- Wait five (5) minutes to clear out any gas. If you then smell gas, STOP! Follow B in the information on the unit safety label. If you don't smell gas, go to the next step.
- 8. Turn the gas valve switch to the ON position.
- 9. Replace the control access panel.
- 10. Turn on all electric power to the unit.
- 11. Set the thermostat to the desired setting.
- 12. If the unit will not operate, follow the instructions To Turn Off Gas To Appliance and call your service technician or gas supplier.

To Turn Off Gas To Unit

1. Set the thermostat to the OFF position.

- Turn off all electric power to the appliance if service is to be performed.
- 3. Remove the control access panel.
- 4. Turn the gas valve switch to the OFF position. DO NOT FORCE.
- 5. Replace the control access panel.

Post Start Check List

After the entire control circuit has been energized and the heating section is operating, make the following checks:

- 1. Check for gas leaks in the unit piping as well as the supply piping.
- 2. Check for correct manifold gas pressures. See Checking Gas Input.
- 3. Check the supply gas pressure. It must be within the limits shown on rating nameplate. Supply pressure should be checked with all gas appliances in the building at full fire. At no time should the standby gas line pressure exceed 13.5", nor the operating pressure drop below 4.5" for natural gas units. If gas pressure is outside these limits, contact the local gas utility for corrective action.

Manifold Gas Pressure Adjustment

Small adjustments to the gas flow may be made by turning the pressure regulator adjusting screw on the automatic gas valve.

Refer to Figure 9.

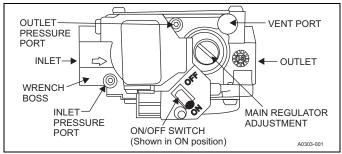


FIGURE 9: Gas Valve

Adjust as follows:

- 1. Remove the cap from the valve body. See Figure 9 for location.
- To decrease the gas pressure, turn the adjusting screw counterclockwise.
- 3. To increase the gas pressure, turn the adjusting screw clockwise.

NOTICE

The correct manifold pressure for natural gas furnaces is 3.5 IWG. The correct manifold pressure for propane (LP) is 10.0 IWG.

Adjustment of Temperature Rise

After about 20 minutes of operation, determine the heating temperature rise. Take readings of both the return air and the heated air in the ducts about six feet from the unit where they will not be affected by radiant heat

The temperature rise (or temperature difference between the return air and the heated air from the unit) must lie within the range shown on the rating plate and the data in Table 6.

After the temperature rise has been determined, the CFM can be calculated as follows:

Degrees F Temp Rise =
$$\frac{BTUH \ Output}{1.08 \ x \ CFM}$$

$$OR$$

$$CFM = \frac{BTUH \ Output}{1.08 \ x \ Degrees F \ Temp \ Rise}$$

Direct Drive Blower

All units have direct drive, multi speed standard ECM blower motors. Connect manometer per "EXTERNAL STATIC PRESSURE SECTION". Place unit in cooling mode and adjust blower speed accordingly per Table 11 or 12.

EXTERNAL STATIC PRESSURE SETUP

To measure external static pressure:

- · Measure the supply air static pressure
- · Record this positive number

- Measure the return air static pressure
- · Record this negative number
- Treat the negative number as a positive and add the two numbers together
- · This is total system static

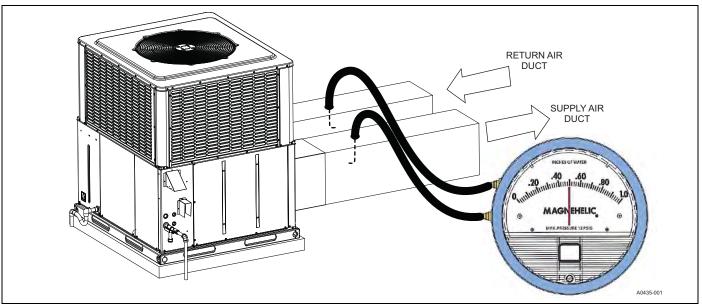


FIGURE 10: Measuring External Static Pressure

CHECKING GAS HEAT INPUT

Natural Gas

- 1. Turn off all other gas appliances connected to the gas meter.
- With the unit turned on, measure the time needed for one revolution of the hand on the smallest dial on the meter. A typical gas meter usually has a 1/2 or a 1 cubic foot test dial.
- Using the number of seconds for each revolution and the size of the test dial increment, find the cubic feet of gas consumed per hour from Table 15.

If the actual input is not within 5% of the unit heating rating with allowance being made for the permissible range of the regulator setting, replace the orifice spuds with spuds of the proper size.

NOTICE

To find the BTU input, multiply the number of cubic feet of gas consumed per hour by the BTU content of the gas in your particular locality. (Contact your gas company for this information since it varies widely from city to city.)

Table 15: Gas Rate Cubic Feet Per Hour¹

Seconds for	Size of Test Dial					
One Rev.	1/2 cu. ft.	1 cu. ft.				
10	180	360				
12	150	300				
14	129	257				
16	113	225				
18	100	200				
20	90	180				
22	82	164				
24	75	150				
26	69	138				
28	64	129				
30	60	120				
32	56	113				
34	53	106				
36	50	100				
38	47	95				
40	45	90				
42	43	86				
44	41	82				
46	39	78				
48	37	75				
50	36	72				
52	35	69				
54	34	67				
56	32	64				
58	31	62				
60	30	60				

1. EXAMPLE: By actual measurement, it takes 38 seconds for the hand on the 1-cubic foot dial to make a revolution with just a 100,000 BTUH furnace running. Using this information, locate 38 seconds in the first column of Table 15. Read across to the column headed "1 Cubic Foot," where you will see that 95 cubic feet of gas per hour are consumed by the furnace at that rate. Multiply 95 x 1050 (the BTU rating of the gas obtained from the local gas company). The result is 99,750 BTUH, which is close to the 100,000 BTUH rating of the unit.

SECTION VII: TYPICAL WIRING DIAGRAMS

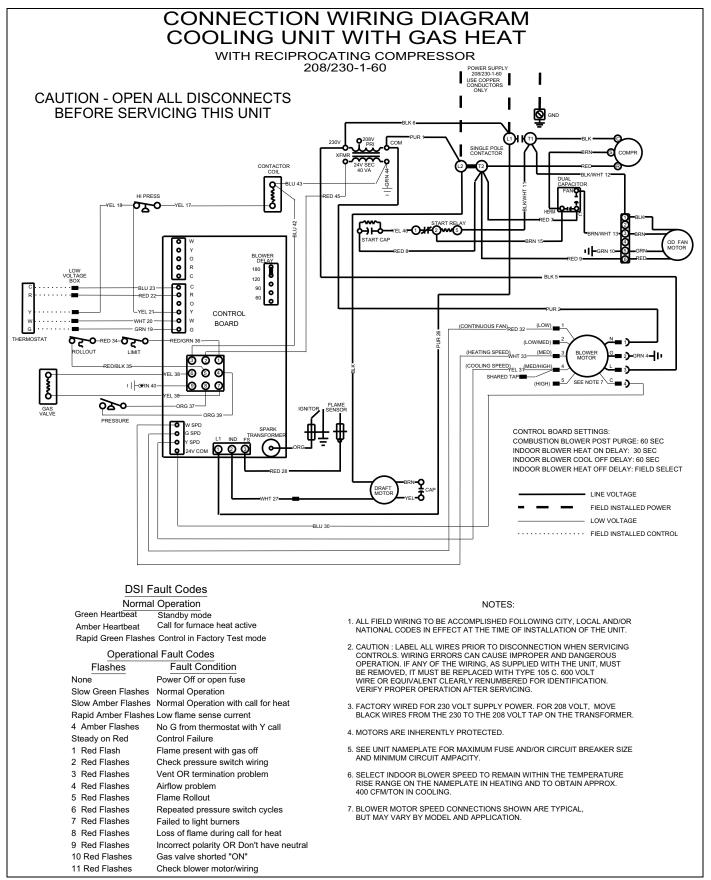


FIGURE 11: Connection Wiring Diagram - 2 to 3 Ton Models

LADDER WIRING DIAGRAM COOLING UNIT WITH GAS HEAT

WITH RECIPROCATING COMPRESSOR 208/230-1-60

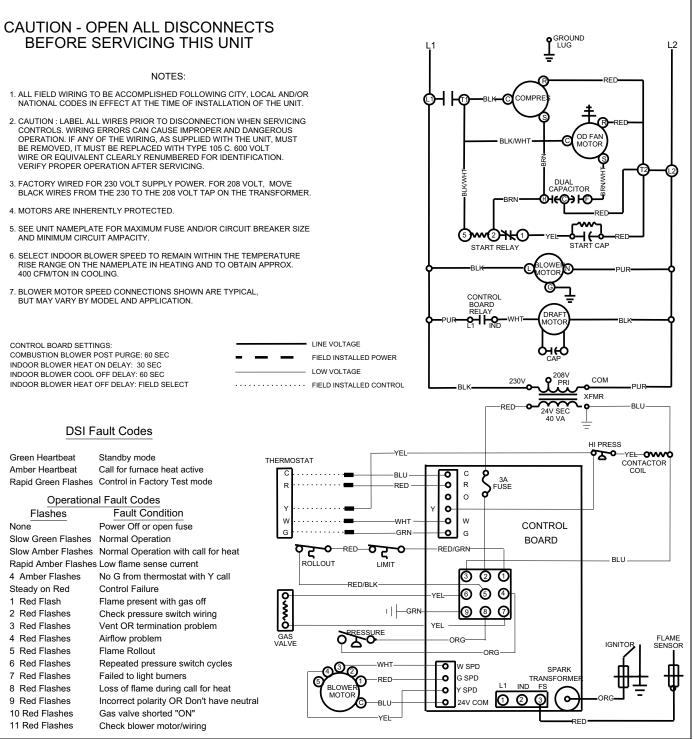


FIGURE 12: Ladder Wiring Diagram - 2 to 3 Ton Models

CONNECTION WIRING DIAGRAM COOLING UNIT WITH GAS HEAT WITH SCROLL COMPRESSOR 208/230-1-60 **CAUTION - OPEN ALL DISCONNECTS** BEFORE SERVICING THIS UNIT CONTACTOR RED 22 CONTROL -WHT 20 BOARD (CONTINUOUS FAN)RED 32 0-20-KED 34-0-20 OLLOUT GRN 4 **Q 0** RED/BLK 35 COOLING SPEED) YEL 31 (MED/HIGH **@** @ (HIGH) <u>∞</u> CONTROL BOARD SETTINGS: COMBUSTION BLOWER POST PURGE: 60 SEC INDOOR BLOWER HEAT ON DELAY: 30 SEC. INDOOR BLOWER COOL OFF DELAY: 60 SEC INDOOR BLOWER HEAT OFF DELAY: FIELD SELECT LINE VOLTAGE FIELD INSTALLED POWER LOW VOLTAGE · · · · · · FIELD INSTALLED CONTROL **DSI Fault Codes** Normal Operation NOTES: Green Heartbeat Standby mode 1. ALL FIELD WIRING TO BE ACCOMPLISHED FOLLOWING CITY, LOCAL AND/OR Call for furnace heat active Amber Heartbeat NATIONAL CODES IN EFFECT AT THE TIME OF INSTALLATION OF THE UNIT. Rapid Green Flashes Control in Factory Test mode 2 CAUTION : LABEL ALL WIRES PRIOR TO DISCONNECTION WHEN SERVICING **Operational Fault Codes** CONTROLS. WIRING ERRORS CAN CAUSE IMPROPER AND DANGEROUS OPERATION. IF ANY OF THE WIRING, AS SUPPLIED WITH THE UNIT, MUST Fault Condition Flashes BE REMOVED, IT MUST BE REPLACED WITH TYPE 105 C. 600 VOLT WIRE OR EQUIVALENT CLEARLY RENUMBERED FOR IDENTIFICATION. None Power Off or open fuse VERIFY PROPER OPERATION AFTER SERVICING. Slow Green Flashes Normal Operation Slow Amber Flashes Normal Operation with call for heat 3. FACTORY WIRED FOR 230 VOLT SUPPLY POWER. FOR 208 VOLT, MOVE BLACK WIRES FROM THE 230 TO THE 208 VOLT TAP ON THE TRANSFORMER. Rapid Amber Flashes Low flame sense current 4 Amber Flashes No G from thermostat with Y call 4. MOTORS ARE INHERENTLY PROTECTED. Steady on Red Control Failure 5. SEE UNIT NAMEPLATE FOR MAXIMUM FUSE AND/OR CIRCUIT BREAKER SIZE 1 Red Flash Flame present with gas off AND MINIMUM CIRCUIT AMPACITY. 2 Red Flashes Check pressure switch wiring 3 Red Flashes Vent OR termination problem 6. SELECT INDOOR BLOWER SPEED TO REMAIN WITHIN THE TEMPERATURE RISE RANGE ON THE NAMEPLATE IN HEATING AND TO OBTAIN APPROX. 4 Red Flashes Airflow problem 400 CFM/TON IN COOLING 5 Red Flashes Flame Rollout 7. BLOWER MOTOR SPEED CONNECTIONS SHOWN ARE TYPICAL, BUT MAY VARY BY MODEL AND APPLICATION. 6 Red Flashes Repeated pressure switch cycles Failed to light burners 7 Red Flashes 8 Red Flashes Loss of flame during call for heat 9 Red Flashes Incorrect polarity OR Don't have neutral 10 Red Flashes Gas valve shorted "ON" 11 Red Flashes Check blower motor/wiring

FIGURE 13: Connection Wiring Diagram - 3.5 to 5 Ton Models

LADDER WIRING DIAGRAM COOLING UNIT WITH GAS HEAT

WITH SCROLL COMPRESSOR 208/230-1-60

CAUTION - OPEN ALL DISCONNECTS BEFORE SERVICING THIS UNIT

NOTES: 1. ALL FIELD WIRING TO BE ACCOMPLISHED FOLLOWING CITY, LOCAL AND/OR L2 NATIONAL CODES IN EFFECT AT THE TIME OF INSTALLATION OF THE UNIT. 2. CAUTION: LABEL ALL WIRES PRIOR TO DISCONNECTION WHEN SERVICING COMPRI CONTROLS. WIRING ERRORS CAN CAUSE IMPROPER AND DANGEROUS OPERATION. IF ANY OF THE WIRING, AS SUPPLIED WITH THE UNIT, MUST BE REMOVED. IT MUST BE REPLACED WITH TYPE 105 C. 600 VOLT WIRE OR EQUIVALENT CLEARLY RENUMBERED FOR IDENTIFICATION VERIFY PROPER OPERATION AFTER SERVICING 3. FACTORY WIRED FOR 230 VOLT SUPPLY POWER. FOR 208 VOLT, MOVE BLACK WIRES FROM THE 230 TO THE 208 VOLT TAP ON THE TRANSFORMER. 4. MOTORS ARE INHERENTLY PROTECTED. 5. SEE UNIT NAMEPLATE FOR MAXIMUM FUSE AND/OR CIRCUIT BREAKER SIZE AND MINIMUM CIRCUIT AMPACITY. 6. SELECT INDOOR BLOWER SPEED TO REMAIN WITHIN THE TEMPERATURE RISE RANGE ON THE NAMEPLATE IN HEATING AND TO OBTAIN APPROX. 400 CFM/TON IN COOLING. 7. BLOWER MOTOR SPEED CONNECTIONS SHOWN ARE TYPICAL, BUT MAY VARY BY MODEL AND APPLICATION. CONTROL BOARD SETTINGS: LINE VOLTAGE COMBUSTION BLOWER POST PURGE: 60 SEC FIELD INSTALLED POWER INDOOR BLOWER HEAT ON DELAY: 30 SEC LOW VOLTAGE INDOOR BLOWER COOL OFF DELAY: 60 SEC INDOOR BLOWER HEAT OFF DELAY: FIELD SELECT FIELD INSTALLED CONTROL XFMR **DSI Fault Codes** -BLU Green Heartbeat Standby mode HI PRESS Amber Heartbeat Call for furnace heat active -YEL Rapid Green Flashes Control in Factory Test mode THERMOSTAT CONTACTOR **Operational Fault Codes** R -RED 0 Fault Condition Flashes 0 0 Power Off or open fuse None 0 Slow Green Flashes Normal Operation -WHT 0 W CONTROL Slow Amber Flashes Normal Operation with call for heat **BOARD** Rapid Amber Flashes Low flame sense current RED/GRN کو 4 Amber Flashes No G from thermostat with Y call BLU ROLLOUT LIMIT Steady on Red Control Failure 1 Red Flash Flame present with gas off -RED/BLK-2 Red Flashes Check pressure switch wiring **6** 0~~0 3 Red Flashes Vent OR termination problem 4 Red Flashes Airflow problem YEL 5 Red Flashes Flame Rollout PRESSURE ORG FLAME 6 Red Flashes Repeated pressure switch cycles IGNITOR SENSOR 7 Red Flashes Failed to light burners W SPD 8 Red Flashes SPARK TRANSFORME Loss of flame during call for heat G SPD 0 9 Red Flashes Incorrect polarity OR Don't have neutral IND 0 Y SPD 10 Red Flashes Gas valve shorted "ON" 0 2 0 11 Red Flashes Check blower motor/wiring

YEL

FIGURE 14: Ladder Wiring Diagram - 3.5 to 5 Ton Models

RED

R-410A QUICK REFERENCE GUIDE

Refer to Installation Instructions for specific installation requirements

- R-410A refrigerant operates at 50 70 percent higher pressures than R-22. Be sure that servicing equipment and replacement components are designed to operate with R-410A.
- R-410A refrigerant cylinders are rose colored.
- Recovery cylinder service pressure rating must be 400 psig, DOT 4BA400, or DOT BW400.
- Recovery equipment must be rated for R-410A.
- <u>DO NOT</u> use R-410A service equipment on R-22 systems. All hoses, gages, recovery cylinders, charging cylinders and recovery equipment must be dedicated for use on R-410A systems only.
- Manifold sets must be at least 700 psig high side, and 180 psig low side, with 550 psig retard.
- All hoses must have a service pressure rating of 800 psig.
- Leak detectors must be designed to detect HFC refrigerants.
- Systems must be charged with liquid refrigerant. Use a commercial type metering device in the manifold hose.
- R-410A can only be used with POE type oils.
- POE type oils rapidly absorb moisture from the atmosphere.
- Vacuum pumps will **not** remove moisture from R-410A refrigerant oils.
- <u>Do not use liquid line driers with a rated working pressure rating less than 600 psig.</u>
- <u>Do not install suction line driers in the liquid line.</u>
- A liquid line drier is required on every unit.
- <u>Do not use a R-22 TXV. If a TXV is to be used, it must be a R-410A TXV.</u>
- Never open system to atmosphere when under a vacuum.
- If system must be opened for service, evacuate system then break the vacuum with dry nitrogen and replace all filter driers.

FIGURE 15: R-410A Quick Reference Guide

NOTES

SECTION VIII: START UP SHEET

Residential Package Unit Cooling / Gas Heat Start-Up Sheet Proper start-up is critical to customer comfort and equipment longevity

Print Form	, ropor c	otare up ic	ontiour to out		and oquip	nom longovi	-9	Reset	-orm
					1				
Start-Up Date	Company	Name			Start-Up	Technician			
Owner Information									
Name		Address				Daytime Ph	one		
City		State	e or Province			Zip or Posta	al Code		
Equipment Data									
Unit Model #			Unit Serial #						
General Informatio	n (Check al	I that app	ıly)						
○ Residential	0	New Cons	struction	○ Roof le	evel		O Dov	wn flow	
○ Commercial	0	Retrofit		○ Grade	level		○ Side	e flow	
Unit Location and		•		• ,			•		
Unit is level and instal	led on:	Slab	Roof curb	Duct connection	ons are con	nplete:	Supply	☐ Re	eturn
Condensate drain pro	perly connec	ted per th	ne installation ir	nstructions	Cond	ensate trap h	as been	primed with	ı water
Filters									
Filters installed Nur	mber of filters	5	Filter size	○ Fil	ter located	inside (Filter	located out	side
Additional Kits & A	ccessori	es Insta	alled (Check	all that apply)					
Refrigerant safety kit	Low ar	nbient kit	Anti-recy	cle timer 🔲 Cr	ank case h	eater 🗌 Fi	lter fram	ne kit	
☐ Transformer kit	Econor	mizer	Roof curb	kit 🔲 Ba	ase rail hole	e blockage kit	t 🗌		
Manual fresh air damp	oer kit 🔲	Motorized	l fresh air damp	oer kit					
Electrical Connect	ions & Ins	pection	n (Check all t	hat apply)					
<u> </u>	ree phase	○ 208 v		230 volt AC		460 volts AC		○ 575 volt	
Inspect wires and elec	trical connec	tions	Transforme	r wired properly	for primar	y supply volta	age 🗌	Ground co	nnected
Low voltage present a	at control boa	rd "R & C'	1	Measured voltag	ge "R" and '	"C" outdoor u	ınit cont	rol board	
Line voltage present a	at disconnect	Measu	ured voltage "L	1 to L2"	"L2 t	o L3"		"L1 to L3"	
Compressor amperes "L1"		"L2"	"L3"	Tot	tal ampere	s "L1"	"L2"		.3"
○ Single stage compress	sor \bigcirc T	wo stage	compressor						
Air Flow Setup / Cooling									
		CC	OOL OA	С	В	○ c		\bigcirc D	
Diamen Tuna	O V.S. ECM	ADJ	IUST ()A	С	В	○ C		\bigcirc D	
Blower Type &		DE	LAY OA	С	○B			(D	
Set-Up	○ ECM	<u></u> 1	<u>2</u>	С	3	<u> </u>		<u></u>	
-	○ PSC	○ Lo	w	dium Low	Medium	○ Med	lium Hig	h (Hig	h
Supply static (inches of w	ater column)		Supply air dry b	oulb temperature	e	Outside air d	ry bulb t	temperature	2
Return static (inches of water column) Return air dry bulb temperature				e	Return air we	et bulb to	emperature		
Total external static pressure Temperature drop				rop		Supply air we	et bulb t	emperature	

Refrigerant Charge and	l Metering Device									
○ R-410A ○ R-22	Data plate - lbs / Oz		Suction line	temperature	Dischai	rge pressure				
○ TXV ○ Fixed Orifice	Discharge line		Suction	pressure	Liquid lin	e temperature				
TXV# / Orifice size	temperature		Supe	erheat	Suk	ocooling				
Gas Heat										
○ Single Stage ○ Two Stag	ge Natural Gas	Propar	ne LP (Requi	res LP Conversion K	it)					
LP Gas Conversion Kit # LP Conversion Kit Installed By Inlet Gas Pressure (w.c.")										
Manifold Pressure at 100% Firin	g Rate (w.c.") Mea	sured BTU/	H (Clock Gas	s Meter Nat Gas)	Rate	d BTU/H				
Manifold Pressure / Low Fire Rat	te (w.c.") Return Air	Dry Bulb T	emp	Supply Air Dry Bul	lb Temp	Temp Rise				
Burner Flame Inspection - Bl	lue flames extending direc	tly into the	primary hea	at exchanger cells						
Clean Up Job Site										
Job site has been cleaned, i	indoor and outdoor debris	removed f	rom job site	:						
☐ Tools have been removed f	from unit									
All panels have been install	led									
Unit Operation and Cyc	le Test									
Operate the unit through o	continuous fan cycles from	the thermo	ostat, noting	and correcting any	y problems					
Operate the unit through c	ooling cycles from the the	rmostat, no	oting and co	rrecting any proble	ms					
Owner Education										
Provide owner with the ow	ner's manual									
Explain operation of system	n to equipment owner									
Explain thermostat use and	d programming (if applicat	ole) to own	er							
Explain the importance of	regular filter replacement a	and equipn	nent mainte	nance						
Comments and Additio	nal Job Details									